Supported by:

* Federal Ministry Federal Agency for EOCap
» | for the Environment, Nature Conservation Nature Conservation 4Africa
and Nuclear Safety

EOCap4Africa

9 Raster Analysis

c) Land Cover Classification

Julius-Maximilians- MARTIN-LUTHER-UNIVERSITAT \{ %
UNIVERSITAT ¥ (ywes) ¥ 'INES Ruhengeri
WU RZBU RG \ 9L P 3'\_5/ / Institute of Applied Sciences
DLR ezt A s

UNIVERSITY OF BOTSWANA




Learning Objectives

Understand the importance of land cover classification
Learn the differences between supervised and unsupervised classification
Explore common classification algorithms used in remote sensing

Identify the advantages and limitations of each method



Land Cover Classification @

The process of categorizing and mapping the Earth's surface into distinct land cover types using
remote sensing imagery and classification algorithms, which analyze the spectral, temporal, and
spatial characteristics of different surfaces.
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Land Cover Classification

Usage

* Environmental monitoring

* Urban planning
» Agriculture and forestry
* Disaster management

(ESA 2017)

no data
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Shrubs cover areas
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Cropland

| Vegetation aquatic or regularly flooded

Lichen Mosses / Sparse vegetation
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Built up areas

Snow and/or Ice

Open water
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Land Cover Classification - Timeseries

2000
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(Chiaka/Zhen 2021)

Trend chart

2010

2000
Agriculture 15.86
Forest 2418
Grassland 8.13
Wetland 0.83
Urban 0.08
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2015
16.13
24.50
8.13
0.84
0.16
50.25

Can you think of other
use cases of LCC
timeseries analysis?



Land Cover Classification Methods

Supervised Classification Unsupervised Classification

Requires training data Clusters pixels based on statistical
(user-defined) patterns
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Supervised Classification

« User provides labeled training data (e.g., selecting known land cover types).
« Algorithm learns from these samples to classify the entire image.

Examples

« Maximum Likelihood Classification (MLC)
* Support Vector Machines (SVM)

» Random Forest (RF)

« Artificial Neural Networks (ANN)
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Supervised Classification

Advantages

* High accuracy if good training
data is available

« Suitable for complex land cover
types

« Can incorporate expert
knowledge
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Disadvantages




Supervised Classification — Maximum Likelihood @

« Aprobabilistic classifier that assigns each pixel to the class with the highest
probability

 Assumes that the data follows a normal (Gaussian) distribution
 Uses statistical parameters from training data (mean, variance, covariance)
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Supervised Classification — Maximum Likelihood

Maximum likelihood classification

How MLC Works
1. Estimates probability density
functions for each class
2. Assigns pixels to the class with the
highest probability
3. Uses a Bayesian decision rule to
minimize classification errors
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Supervised Classification — Maximum Likelihood

Advantages Disadvantages

* Well-established, widely used * Assumes normality, which
in remote sensing may not always be true
* Provides probabilistic * Performance depends on the
confidence levels quality of training data
 Works well if data follows a e Struggles with highly
normal distribution heterogeneous land cover

types
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Supervised Classification — Random Forest
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Supervised Classification — Random Forest

How RF Works Random Forest Classifier
1. Creates multiple decision trees
from random subsets of training o
data i N, features N festres st
2. Each tree classifies pixels fg f\o/ of%
independently " e e
3. The final classification is e . |
determined by a majority vote I‘I ||

(Khushvaktov 2023)
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Supervised Classification — Random Forest

Advantages Disadvantages

» Handles large datasets with high « Computationally intensive,
accuracy especially for large images

* Does not assume a normal * Requires fine-tuning (e.g.,
distribution number of trees, depth of trees)

* Resistant to overfitting due to « Can be slower than simpler
ensemble averaging classifiers
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Unsupervised Classification

* No prior training data required
* Algorithm automatically groups pixels into spectral clusters
 User assigns classes to clusters after classification

Examples
 K-Means Clustering
» |SODATA (lterative Self-Organizing Data Analysis)
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Unsupervised Classification

Advantages

 No need for pre-labeled data

» Faster and more automated
process

« Useful for exploratory analysis

Disadvantages

 Results may not match
real-world categories well

 User must interpret clusters
manually

* Less control over classification
rules
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Unsupervised Classification — K-Means

* An unsupervised classification method that partitions pixels into clusters
based on similarity
 The number of clusters (K) is defined by the user
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Unsupervised Classification — K-Means

How MLC Works
1. Select K cluster centers
(centroids) randomly

Before K-Means

A

2. Assign each pixel to the nearest
centroid based on spectral
distance

3. Compute new centroid positions
as the average of assigned pixels

4. Repeat the process until clusters

stabilize
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After K-Means

>
(Patel 2021)
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Unsupervised Classification — K-Means

Advantages

e Fast and efficient for large

datasets

* No need for labeled training

data

Disadvantages

Requires predefined number
of clusters (K)

May assign similar land cover
types to different clusters

e Works well for initial land Sensitive to outliers and

cover exploration

spectral variability
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Supervised vs Unsupervised Classification

Aspect

Training Data
User Involvement
Accuracy

Best for

Example Methods

Supervised Classification
Required

Unsupervised Classification
Not required

High (training data & validation)

Lower (post-classification interpretation)

Typically higher

Can be lower due to spectral mixing

Thematic mapping, detailed studies

Quick analysis, unknown land cover

Maximum Likelihood, Random Forest, SVM

K-Means, ISODATA
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Summary & Key Takeaways

Land cover classification is essential for remote sensing analysis
Supervised Classification requires training data and is more accurate
Unsupervised Classification is fully automated but requires interpretation

Choosing the right method depends on data availability and project goals
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Thank you for your attention!

Dr. Insa Otte, Hanna Schulten
(on behalf of the EOCap4Africa Team)

and colleagues

insa.otte@uni-wuerzburg.de
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