Supported by:

EOCap4Africa

6 Introduction to handling Spatial Data in QGIS and RStudio

b) Handling Raster Data

Learning Objectives

Import and export raster data in QGIS and RStudio

Use both QGIS and R to work with raster data

Part 1:

Handling Raster Data in QGIS

- Download the Raster file and unzip it
- Move the folder of the Raster file to your desired location
- Load in the Data

Method 1)

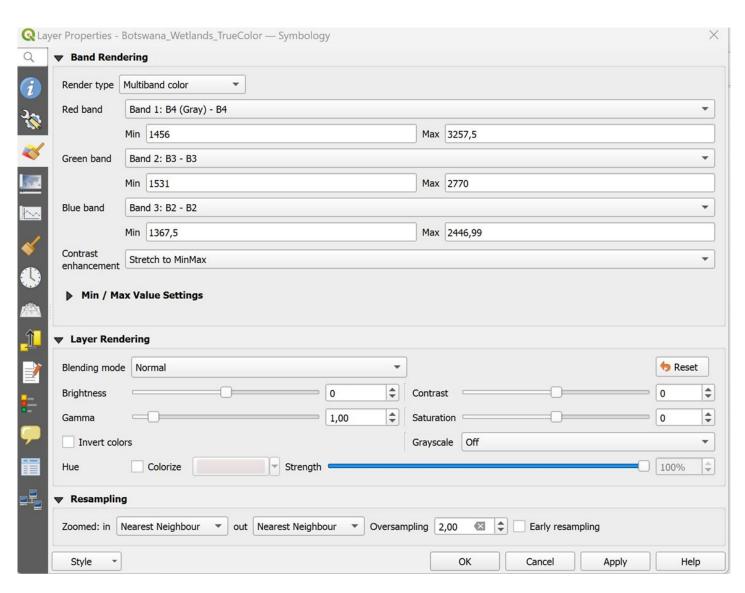
Just pull the .tif file from your explorer into QGIS

Method 2)

- Go to Layer in the Menu Bar
 - Add Layer
 - Add Raster Layer
- Go to the Raster file and 4) double click it

Inspecting Raster Data

Inspect the properties of the raster file. Are they different compared to the vector file?



Tip!
Right click on
your layer and
select "Zoom to
layer" to
immediately
switch the map
view to the
layers extend

Inspecting the Bands of the Raster Image

Switch out the bands in the layer properties and create false-color images

Can you think of cases where you would want to switch the bands?

Raster Tools in QGIS

Tool Name	Category	Function
Clip Raster by Mask Layer	Geoprocessing	Cuts a raster using the shape of another layer (e.g., extract a DEM for a country).
Reproject Raster	Geoprocessing	Changes the CRS of a raster layer.
Resample Raster	Geoprocessing	Changes the resolution of a raster (e.g., from 30m to 10m).
Raster Calculator	Analysis	Performs mathematical operations on raster layers (e.g., NDVI calculation).
Hillshade	Terrain Analysis	Creates a shaded relief effect from an elevation raster.
Slope & Aspect	Terrain Analysis	Computes slope and direction from a DEM.
Convert Raster to Vector	Data Conversion	Converts a raster dataset into vector format (e.g., land use classification).

- 1. Form Groups of at least two people
- 2. Choose a Raster Tool you want to present
 - 3. Run the Tool
- 4. Explain the Tool and its functionality to your fellow classmates

Part 2:

Handling Raster Data in RStudio

- Double click on the downloaded and unzipped R-file "5.2_How_to_handle_Raster_Data.r"
 - 2. The file will open in RStudio

Using Packages


```
# 1. Install and load necessary packages
install.packages(c("terra", "ggplot2"))

# Load the libraries
library(terra)  # For handling raster data
library(ggplot2)  # For visualization
```

Do you still remember what the "c" does?

Get the Raster Data

- 1) We are using the raster we already visualised in QGIS
- 2) Define the variable "raster_path" using the file path where you placed the .tif file

```
# 2. Load raster data
# Replace this path with the path to your raster file
raster_path <- "C:/Users/schul/Documents/Berufliches/Hiwi EOCap4Africa/Geodata_tasks/
# Read the raster file into R using `rast` from `terra`
true_color <- rast(raster_path)</pre>
```

3) We assign the raster to the variable "elevation"

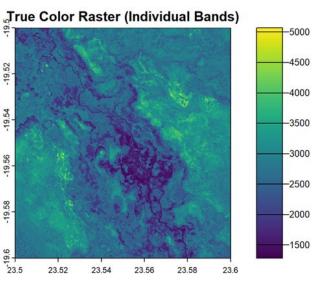
Assesing Meta Data

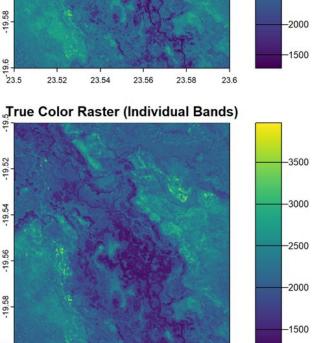
- Print() gives you the most basic information about your raster
- Summary() displays statistics as well as a range of information about the geometry

```
# Check the structure of the raster data
print(true_color) # Displays basic information about the raster
summary(true_color) # Provides statistical summaries of pixel values
```


Julius-Maximilians-UNIVERSITÄT WÜRZBURG

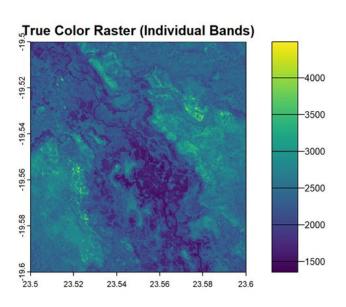
Visualise Raster Data




- Use the basic plot() function to display any type of data
- Using "main" we define the plot title

```
# 3. Visualize the raster data
# Quick visualization of individual bands
plot(true_color, main = "True Color Raster (Individual Bands)")
```

Visualising Raster Data


23.6

23.52

23.54

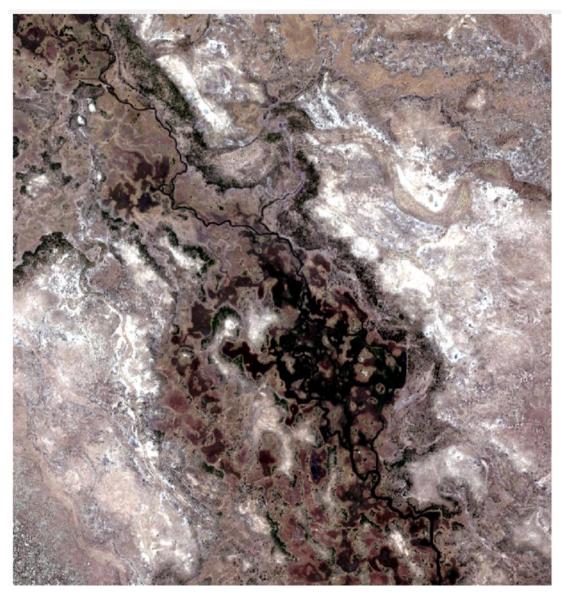
23.56

23.58

So, why are there 3 images?

Because the raster data has 3 bands!

Visualising Raster Data



 To visualise Raster Data as a true color image we need to assign the rasters bands to the variables "r" (red), "g" (green), "b" (blue)

Visualising Raster Data

The Result:

- Create a false color image in R by switching up the band combinations
- 2. In which circumstances could you maybe want a false color image as a result?

RESEARC

Summary & Key Takeaways

Raster data can be imported and exported in both QGIS and RStudio

Basic raster manipulations include extraction by mask, resampling, reprojecting, and raster math

QGIS is great for interactive raster processing, while R enables automation and large-scale analysis

Supported by:

Thank you for your attention!

Dr. Insa Otte, Hanna Schulten (on behalf of the EOCap4Africa Team) and colleagues

insa.otte@uni-wuerzburg.de

