### Supported by:







# **EOCap4Africa**

### 5 Introduction to R and QGIS

b) Introduction to QGIS















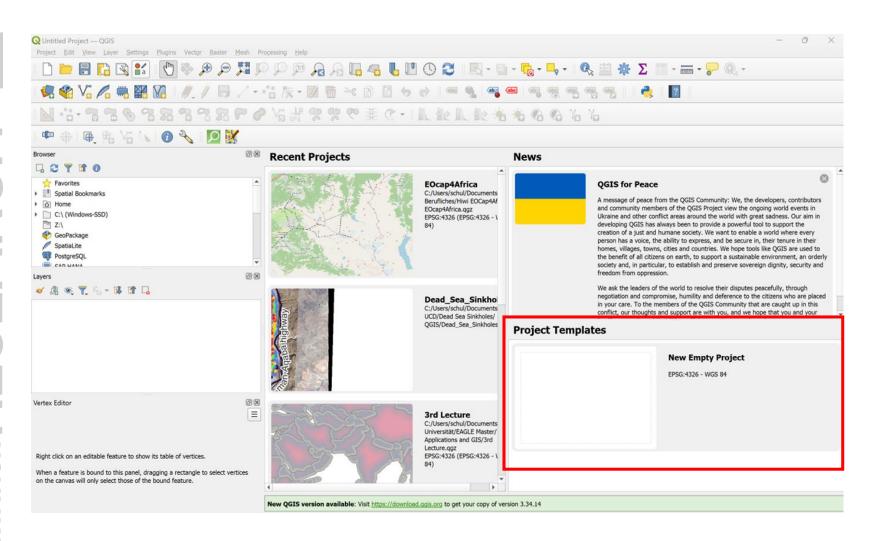




# **Learning Objectives**



Understand the general layout of QGIS


Identify key toolbars and panels in the interface

Learn the basics of coordinate reference systems (CRS) and projections

Install and activate essential QGIS plugins

## **Starting QGIS for the first time**





- Start your QGIS application
- Open a new Project on the left
- Old projects will appear on the right



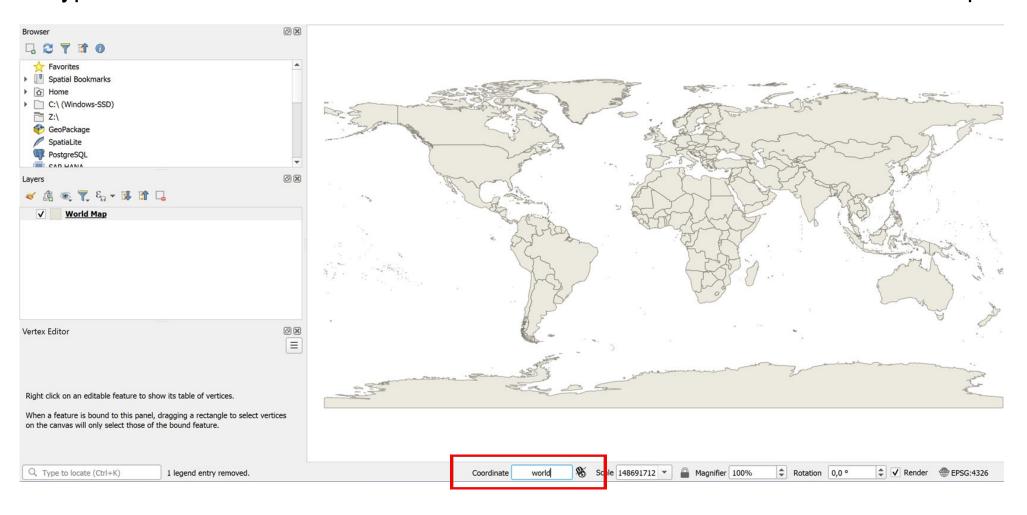






# **Understanding the QGIS Layout**




| Section       | Function              | Key Features                                 |  |
|---------------|-----------------------|----------------------------------------------|--|
| Menu Bar      | Access all functions  | File, Edit, View, Layer, Plugins             |  |
| Toolbars      | Quick access to tools | Add layers, zoom, measure, select features   |  |
| Layers Panel  | Manage map layers     | Turn layers on/off, reorder them             |  |
| Browser Panel | Find and add data     | Connect to files, databases, online services |  |
| Map Canvas    | Display your map      | Shows layers in the project                  |  |
| Status Bar    | Coordinates & scale   | Shows CRS, rendering progress                |  |



# **Viewing Data in QGIS**



Type World in the Coordinate field in the status bar to access a vector world map!





# **Viewing Data in QGIS**



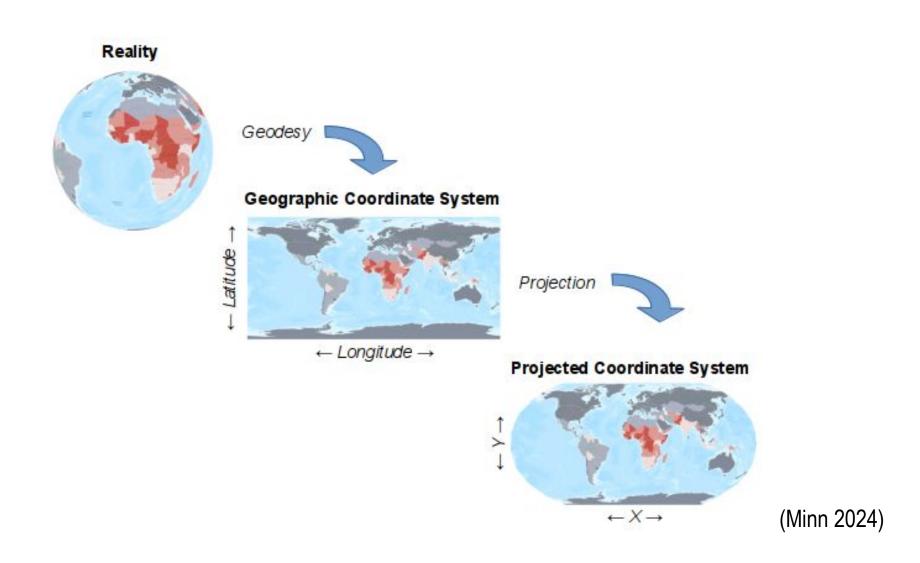
Try it out for yourself!

- 1) What has changed in your QGIS after the data was added?
- 2) Zoom around the map and find where you are currently located.

# **Understanding Projections and CRS**



### What is a CRS?


- A Coordinate Reference System (CRS) defines how spatial data is positioned on the Earth's surface
- Every GIS dataset has a specific projection and datum that determine how it is displayed on a map
- Incorrect CRS settings can lead to misaligned or distorted maps

### Key Components of a CRS:

- Datum: Defines the reference model of the Earth's shape (e.g., WGS84, NAD83)
- Projection: A mathematical transformation that flattens the 3D Earth onto a 2D plane
- Coordinate System: Defines the measurement units (e.g., latitude/longitude, meters)

# **Understanding Projections and CRS**









### Affects:

Accuracy of spatial analysis (distance, area, angles)
Alignment of datasets (combining multiple sources)
Correct display on maps (avoiding distortions)

| Problem                | Cause                                 | Solution                                    |  |
|------------------------|---------------------------------------|---------------------------------------------|--|
| Misaligned layers      | Different CRS in datasets             | Convert to a common CRS                     |  |
| Distorted shapes       | Using an unsuitable projection        | Choose a projection suitable for the region |  |
| Incorrect measurements | Mixing projected and unprojected data | Ensure all layers use a projected CR        |  |





## **Common CRS**



| <b>Projection Name</b>         | Туре       | Best Used For                               | EPSG Code   |
|--------------------------------|------------|---------------------------------------------|-------------|
| WGS84                          | Geographic | Global datasets, GPS                        | EPSG:4326   |
| UTM Zones                      | Projected  | Local/regional precision mapping            | EPSG:326XX  |
| Web Mercator                   | Projected  | Web-based maps (Google Maps, OpenStreetMap) | EPSG:3857   |
| Albers Equal Area              | Projected  | Large-scale national maps                   | EPSG:5070   |
| Africa Albers Equal Area Conic | Projected  | Africa-focused data                         | EPSG:102022 |



# Changing the CRS in QGIS



You can check the EPSG code in the Status Bar on the right





# RESEARC

### Changing the CRS in QGIS



### Changing the CRS of a Project

- Go to Project in the Menu Bar → Properties → CRS
- Select a new projection (e.g., EPSG:4326 for global datasets)

### Reprojecting a Layer

- Select Layer in Layer Panel by right clicking → Export → Save As...
- Choose the desired CRS from the dropdown list
- Save the reprojected layer as a new file



### **Tasks**



- 1. Try it out for yourself and reproject your data!
  - 2. Describe the changes!
- 3. For which study would you use which CRS?



# RESEARCH

# **Installing and Managing Plugins**

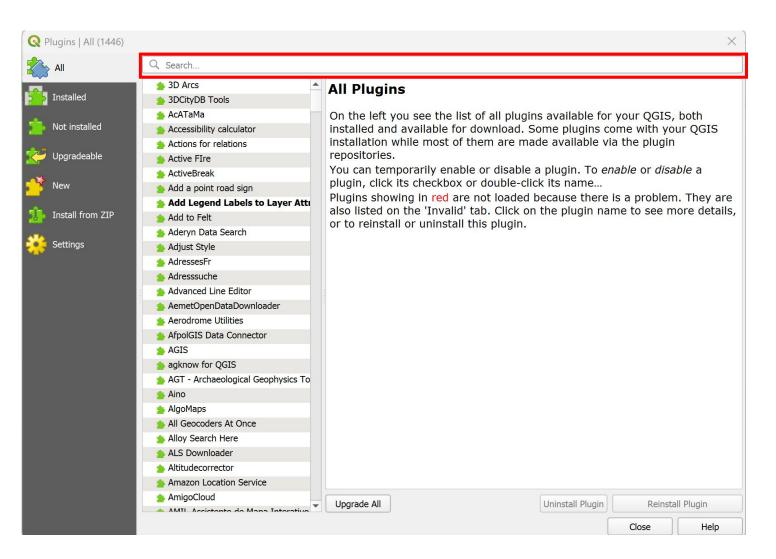


### Why Use Plugins?

• Extend QGIS functionality (e.g., web mapping, data analysis, automation)

### How to Install a Plugin:

- Go to Plugins in the Menu Bar → Manage and Install Plugins
- Search for the desired plugin
- Click Install and enable it



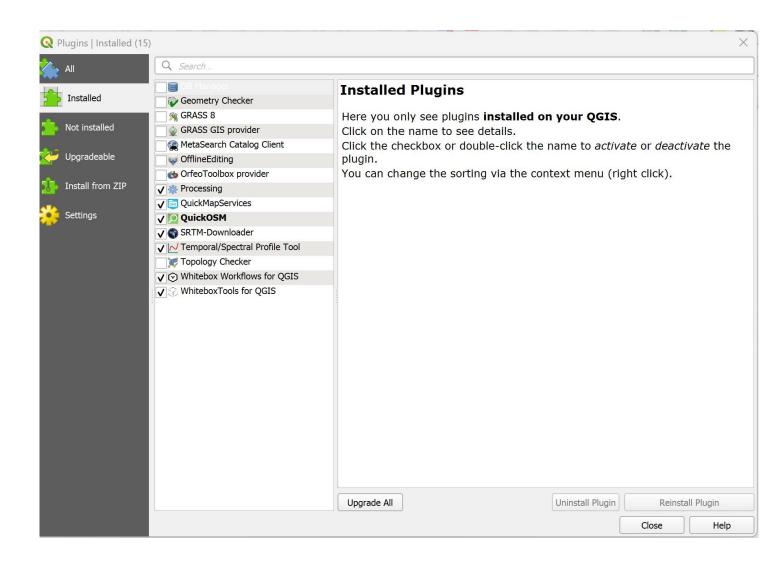

# **Installing and Managing Plugins**



Lets install your first Plugin!

Search for QuickMapServices




# **Installing and Managing Plugins**

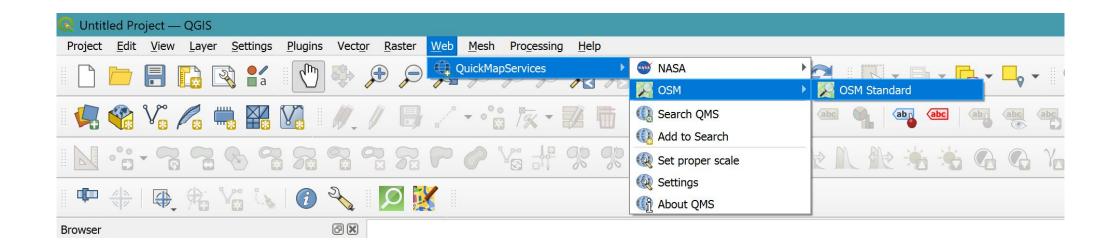


Once you have found it, the option to install it will show up on the bottom right

Installed Packages show up on the Installed page

Make sure that QuickMapServices and **Processing** both have their box ticked!








### Using QuickMapServices



Web -> QuickMapServices -> OSM -> OSM Standard lets you add a map to the background





## Task



Explore the OpenStreetMap!



# RESEARC

## Saving a QGIS Project



### Why Save Your Project?

- QGIS projects store layer arrangements, styles, and settings, allowing you to continue working without reloading everything
- Prevents losing progress when handling multiple datasets

### How to Save a QGIS Project:

- Go to Project → Save As...
- Choose a location and enter a meaningful filename (e.g., land\_cover\_analysis.qgz)
- Click Save to store the project



# Task



Save your project!



# **Summary & Key Takeaways**



QGIS has an intuitive layout with key panels: Layers, Browser, and Map Canvas

Coordinate Reference Systems (CRS) determine how spatial data aligns on Earth, and using the correct projection is crucial for accuracy

Common projections include WGS84 (global), UTM (local), Web Mercator (web mapping), and Africa Albers Equal Area Conic (for African studies)

Plugins enhance QGIS capabilities—OpenLayers, QuickMapServices, and GRASS GIS are useful additions

Saving your QGIS project regularly ensures you don't lose progress and maintains organized workflows



### **Sources**



Minn, M. (2024, October 27). *Map projections*. Retrieved February 10, 2025, from <a href="https://michaelminn.net/tutorials/gis-projections/">https://michaelminn.net/tutorials/gis-projections/</a>

### Supported by:







# Thank you for your attention!

Dr. Insa Otte, Hanna Schulten (on behalf of the EOCap4Africa Team) and colleagues

insa.otte@uni-wuerzburg.de













