Supported by:

EOCap4Africa

- 1 How to conduct a Remote Sensing case study
- c) Importance of Field (In-Situ) Data in Remote Sensing

EARCI

Learning Objectives

- 1) Define in situ (field) data and its role in remote sensing
- 2) Understand why ground data is essential for validation and accuracy
- 3) Identify different types of in situ data used in case studies
- 4) Recognize challenges and best practices for integrating field data

What is In-Situ Data

Definition

- Field data collected directly from the ground to provide real-world reference points
- Used to validate, calibrate, and enhance remote sensing analysis

Why is it Important?

- Remote sensing provides indirect measurements (e.g., NDVI for vegetation health)
- Field data confirms what is really happening on the ground

(Alkindi 2022)

The Role of In-Situ Data in Remote Sensing

Why remote sensing data only is not sufficient for your RS case study

- Atmospheric effects, sensor limitations, and data resolution can introduce errors
- Ground truthing helps improve classification accuracy
- Allows correlation between spectral values and real-world conditions

How in-situ data will enhance the values of your RS case study

- Step 1: Collect satellite data (e.g., Sentinel-2)
- Step 2: Identify study areas requiring ground validation
- Step 3: Conduct field surveys, record data, and take GPS-tagged photos
- Step 4: Compare field measurements with remote sensing results

Types of In-Situ Data

Which types of In-Situ Data can you think of?

(Zhang et al. 2022)

Types of In-Situ Data

Vegetation & Land Cover Surveys

- **Purpose:** Validate land classification (forest, agriculture, wetlands)
- **Example:** Using quadrats to measure tree canopy density

Soil & Moisture Measurements

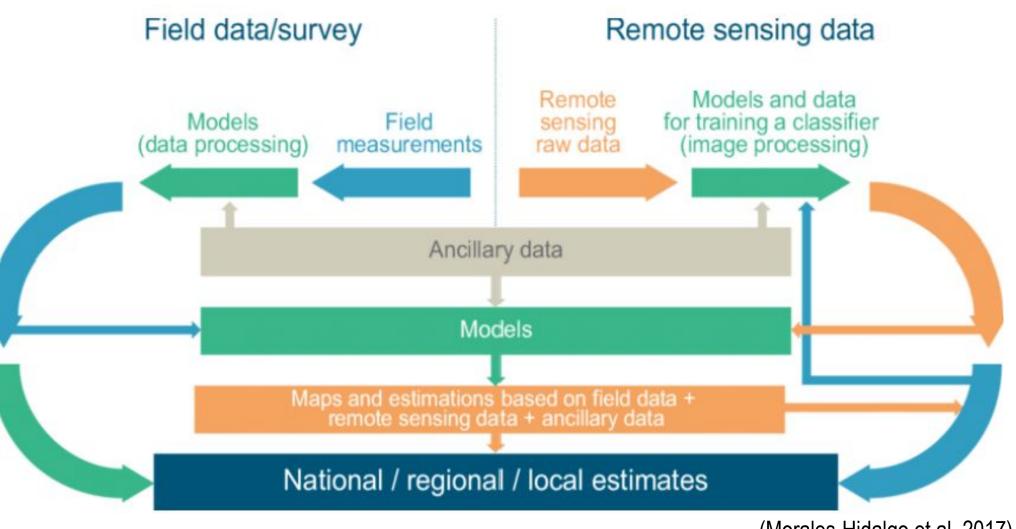
- Purpose: Improve analysis of agricultural and hydrological studies
- Example: Ground sensors measuring soil moisture vs. satellite estimates

Water Quality Sampling

- Purpose: Validate satellite-based water turbidity, algae, and pollution levels
- Example: Taking pH and chlorophyll samples for lake monitoring

Types of In-Situ Data

Climate & Weather Data


- Purpose: Provide real-time atmospheric corrections for satellite data
- Example: Temperature, humidity, and wind speed logs from weather stations

GPS & Drone Surveys

- Purpose: Provide high-resolution reference images for validating satellite classifications
- Example: Drones capturing ultra-high-resolution imagery of deforestation sites

Combining In-Situ and Satellite Data

(Morales-Hidalgo et al. 2017)

Challenges in Collecting and Using In-Situ Data

Time-Consuming & Expensive

• Requires field teams, specialized equipment, and travel costs.

Data Collection Errors

Inconsistent sampling methods can introduce biases.

Scalability Issues

• Field surveys cover limited areas, whereas satellites provide regional/global coverage

Weather & Environmental Barriers

Remote areas, harsh terrain, and seasonal access limitations

Best Practices for Using In-Situ Data

Use standardized protocols

Follow global methodologies for data collection (e.g., FAO Land Cover Classification)

Ensure spatial alignment

Match field data coordinates with satellite imagery

Automate data collection

Use GPS, sensors, and mobile apps for accuracy

Combine multiple data sources

Improve validation by integrating drone imagery, government datasets, and historical records

Document metadata

Record who collected data, when, and under what conditions

Choose In-Situ Data for your own Case Study

Within the next 20 minutes:

- Think of at least three types of in-situ data you can use to make your case study better!
- Go outside, take your phone with you, and do some in-situ sampling (GPS tagged pictures, Quick Capture [needs to be prepared by supervisor])

Summary & Key Takeaways

In situ data is essential for validating remote sensing analysis

Ground truthing improves classification accuracy and interpretation

Challenges include cost, errors, and limited coverage, but best practices help improve reliability

Sources

Alkindi, K. M. (2022, February 1). *The use of remote sensing will be a boon for farmers*. UNESCO Chair on Aflaj Studies. Retrieved February 10, 2025, from https://ishraqa.unizwa.edu.om/article_170504.html Morales-Hidalgo, D., Kleinn, C., & Scott, C. T. (2017). *Voluntary guidelines on national forest monitoring*. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-109619-2.

Zhang, Y., Yang, Y., Zhang, Q., Wang, X., & Others. (2022). Toward multi-stage phenotyping of soybean with multimodal UAV sensor data: A comparison of machine learning approaches for leaf area index estimation. Remote Sensing, 15(1), 7. https://doi.org/10.3390/rs15010007

Supported by:

Thank you for your attention!

Dr. Insa Otte, Hanna Schulten (on behalf of the EOCap4Africa Team) and colleagues

insa.otte@uni-wuerzburg.de

