

OBSER

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Federal Agency for Nature Conservation

EOCap4Africa

Coordinate Reference Systems and Projections 4

MARTIN-LUTHER-UNIVERSITÄT

HALLE-WITTENBERG

ESEARCH

E A

OBSERV

Geoid

The "blue marble" – or is marble really the right term?

2

EARCF

ES

OBSER

ш

Geoid

The Geoid (scale factor: 1000). Wikimedia Commons, 2022

Geographic Coordinate System

The Earth's Geographic Coordinate System: unlike cartesian systems it is not planar, but spherical and uses angles (latitudes and longitudes) to describe locations. Wikimedia Commons, 2022

EOCap4Africa – TB 04 Coordinate systems and Projections

UNIVERSITÄT WÜRZBURG EARCI

RESE

Geographic Coordinate System

Localization on Earth:

- Geoid: geometric shape of the Earth \Box approximated as a rotating sphere (ellipsoid)
- Geographic Coordinate System:
 - Latitude: angle between *perpendicular* of rotating sphere and *equatorial plane* at point on sphere
 - Longitude: angle between *prime meridian* and a plane through *North and South pole* at point on sphere
- Equatorial plane: simply derivable from the axis of rotation (natural)
- Prime Meridian: artificially defined, Eastern and Western hemisphere

Geographic Coordinate System

The Geographic Coordinate System is using 360 longitudes and 180 latitudes and uses the following systems:

- DD: Decimal Degrees (29.1000°, -113.3000°)
- DM: Degrees Decimal Minutes (39°33.0', -125°31.0)
- DMS: Degrees Minutes Seconds (39° 23'05''N, 113°27'01''W)

EOCap4Africa - TB 04 Coordinate systems and Projections

AR(OBSI

AR(

OBSER

Projecting

Projecting a spherical surface onto a plane. (Neteler and Mitasova 2008)

Projecting - Distortions

IVERSITÄT IRZBURG

INN N

OBSI

Distortions visualized for the often-used Mercator projection: Direction and shapes are correct, but area and distance are distorted. (Wikimedia Commons, 2022)

RESEARC

OBS

Projecting

Projecting Earth's spherical surface onto a plane:

- Projection: Transfer of the 3D-shape of the Earth's surface onto a 2D-plane (e.g., a map)
 non-trivial mathematical problem
- Projected coordinate system: Points to locations on a plane
- Geometry: There are four fundamental geometric properties to any geometric feature on a sphere: (i) area, (ii) distance, (iii) direction and (iv) shape
- Distortions: only two of these four can be preserved by a single projection
 mathematical constraint

Projecting – why?

- RESEARCI ٠ • **OBSI**
- Projections allow you to work with spherical data on a cartesian-like grid with dimensions and units easy to interpret
 - Earth observation and other spatial data are delivered projected, and you need to be able to deal with their projection
 - If you use data from different sources, you need to be able to reproject them to a uniform projection
 - Thus, you need to be able to decide which projection to use for your project
 - You might need to project unprojected (geographical, spherical) data to jointly analyze them with projected data

Projecting – What kind of projections exist?

- **Conformal**: map projections preserving angles locally and thereby shape
- Equal-Area: map projections preserving area
- **Equidistant**: map projections preserving distance
- True direction: map projections preserving direction

Projecting – Different ways

UNIVERSITÄT WÜRZBURG

Cylindrical

Azimuthal (planar)

Projecting – Different ways

Conic

Polyconic

UNIVERSITÄT WÜRZBURG **OBSI**

Conic Projections

Albers Conic Equal Area Projection

- Used to map regions of large east-west extent
- More closely spaced at the north edge of the map
- Projection is equal area

AR

OBSI

Conic Projections

Lambert Conic Conformal Projection

- Similar to the Albers projection to map regions of large east-west content
- Unlike the Albers projection, Lambert's conformal projection is not equal-area

17

OBSI

Conic Projections

Equidistant Conic Projection

• Neither conformal or equal-area, but serves as a compromise between them

Lambert Azimuthal Equal Area Projection

- Developed in 1772 by Lambert
- Used for mapping large regions (e.g., continents)
- It is an azimuthal, equal-area projection but not perspective

Lambert Azimuthal Equal Area (created by GMT)

Polar Stereographic Conformal Projection

- Conformal and azimuthal
- Dates back to the Greeks
- Main use for mapping polar regions

Polar Stereographic Conformal (created by GMT)

ARCI OB

Orthographic Projection

- Perspective from an infinite distance
- Used for appearance of the earth from space
- Much distortion is introduced

Orthographic (created by GMT)

ARCF **OBSI**

Equidistant Azimuthal Projection

- Direction from the center is true
- Several centuries old

Equidistant Azimuthal (created by GMT)

Perspective Projection

• Used for a 3D appearance on a 2D plane

Mercator Projection

- Probably most famous
- Originated from G. Cremer (Flemish cartographer, 1569)
- Cylindrical and conformal, no distortion along equator
- Distortion towards poles larger (e.g., Greenland larger than S-America

UNIVERSITÄT WÜRZBURG

Mercator (USGS)

OBS

Cylindrical Projections

- Lambert 1772
- Distortion increases away from the central meridian

EARCF

OB

Transverse Mercator Projection

- Lambert 1772
- Distortion increases away from the central meridian

Transverse Mercator (USGS)

Universal Transverse Mercator Projection

- Subset of the Transverse Mercator Projection
- Adopted by the US Army for maps
- Globe divided into 60 zones (84S-84N)
- Each UTM zone has unique central meridian

Universal Transverse Mercator (created by GMT)

Universal Transverse Mercator Projection

- Subset of the Transverse Mercator Projection
- Adopted by the US Army for maps
- Globe divided into 60 zones (84S-84N)
- Each UTM zone has unique central meridian

			Ţ	1	J				A	1/2	T
38P	29P	30P	31.P	32P	33P	34P	35P	36P	378	38P	39P -
28N	29N	30.1	31N	330	33N	34N	35N	36N	37N	38N	398
28M	29M	30M	31M	32M	331	34M	35M	36M	37M	38M	398
28L	29L	301		32L	33L	34L	351	361	37L	385	391
28K	29K			32K	33K	34K	35K	36K	378	38K	398
28J	29J	303	31.0	323	333	34J	35J	36J	373	383	39J
28H	291	308	318		338	34H	358	368		388	398

UTM zones of Africa

Projections

Projection characteristics:

- Groups: conformal (true shape/angle), equal-area (true area), equidistant (true distances), true direction
- Types: Cylindrical, Azimuthal (planar), Conic, Polyconic
- No perfection, every projection is distorted
- Different projections are suitable for different applications and geographic areas/extents

<u>UNIVERSITÄI</u> WÜRZBURG

Terminology – Geographic Coordinates vs. CRS

It is important to know the difference between the following terms (even though they sound all so similar):

- Geographic Coordinate System: Not a projection, but the **spherical** coordinate system of the Earth
- *Coordinate Reference System (CRS):* Describes a projection, transforming spherical data (3D) into a **planar** system (2D)

A CRS consists of:

- Geodetic datum, the geodetic reference system: placing reference locations on the Earth's sphere and thereby defines the ellipsoid approximating the sphere and how it is placed (e.g., the popular WGS84)
- *Coordinate System*: projecting a coordinate grid of some sort onto the geodetic reference system
- *Units*: spatial measure used by the CRS, e.g., meters, feets, degrees

Which CRS should I use?

- Global Scale: e.g., Sinusoidal Equal Area
- Continental Scale: e.g., Lambert Azimuthal Equal Area
- **Small Scale**: e.g., Universal Transverse Mercator (UTM) with WGS84, Lambert Conformal Conic

Which CRS should I use?

Choice depends on:

- Your aim: Where is your research area) How large does it spread? Which attributes do you want to preserve/distort?
- Your data: With which CRS are your data delivered? Is it worth transforming them? Which common CRS for all your data imposes the least added inaccuracies?
- Your project partners: With which CRS are they working? What CRS should your project be delivered in, e.g., to ease interpretability?

CRS – Implementation example I

EARCI OBS

Human-readable CRS designation:

Universal Transverse Mercator (UTM) World Geodetic System 1984 (WGS84) Zone 32N

Authority ID:

EPSG: 32632

Proj4 string:

1 +proj=utm +zone=32 +datum=WGS84 +units=m +no_defs

EARCI

10

11

12

13

14

15

16

17

18

19

20

K

OBSI

CRS – Implementation example II

Well-known text (WKT):

```
PROJCRS ["WGS 84 / UTM zone 32N",
    BASEGEOGCRS ["WGS 84",
        DATUM ["World Geodetic System 1984",
            ELLIPSOID ["WGS 84", 6378137, 298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM ["Greenwich",0,
            ANGLEUNIT ["degree", 0.0174532925199433]],
        ID["EPSG",4326]],
    CONVERSION ["UTM zone 32N",
        METHOD["Transverse Mercator",
            ID ["EPSG", 9807]],
        PARAMETER["Latitude of natural origin",0,
            ANGLEUNIT["degree",0.0174532925199433],
            ID ["EPSG",8801]],
        PARAMETER["Longitude of natural origin",9,
            ANGLEUNIT ["degree", 0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin", 0.9996,
            SCALEUNIT ["unity",1],
            ID ["EPSG", 8805]],
```


1

2 3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

CRS – Implementation example III

$\overline{\mathbf{O}}$
\mathbf{O}
Ш
HL
AR
ШIJ

0

```
PARAMETER["False easting", 500000,
        LENGTHUNIT ["metre",1],
        ID["EPSG",8806]],
    PARAMETER["False northing",0,
        LENGTHUNIT["metre",1],
        ID["EPSG",8807]]],
CS[Cartesian,2],
    AXIS ["(E)", east,
        ORDER[1],
        LENGTHUNIT["metre",1]],
    AXIS ["(N)", north,
        ORDER[2],
        LENGTHUNIT["metre",1]],
USAGE [
    SCOPE["unknown"],
    AREA["World - N hemisphere - 6^{\circ}E to 12^{\circ}E - by country"],
    BBOX[0,6,84,12]],
ID ["EPSG", 32632]]
```

EARC

OBSI

Ш

CRS and coordinates

Original coordinates and matching CRS

AR

OBSI

CRS and coordinates

Reprojecting (transforming, warping)

Coordinate grid is recalculated based on new CRS, both coordinates and CRS change

Coordinate Reference System (CRS)

Meta information on how grid coordinates are projected

matching

one should never be changed without the other

CRS and coordinates

Assigning a new CRS

EAR(OBS

Coordinates are *not* changes, new CRS is assigned, coordinates and CRS *do not match* anymore

Coordinate Reference System (CRS)

Meta information on how grid coordinates are projected

not matching one should never be changed without the other

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Federal Agency for Nature Conservation

Thank you for your attention!

Dr. Insa Otte and colleagues

insa.otte@uni-wuerzburg.de

HALLE-WITTENBERG

DLR

