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Learning Objectives
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Understand how to create high-quality training data for classification

Learn best practices for selecting representative training samples

Apply training data to classify land cover using a Random Forest model



Training Data
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• The quality of training data directly impacts classification accuracy
• Poor training data can lead to misclassification and unreliable results
• Training data should be well-distributed, balanced, and spectrally distinct

Training data is the foundation of supervised 
classification



Training Data
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• Representative – Covers all land cover classes in the study area
• Balanced – Avoid class imbalances by ensuring roughly equal sample sizes
• Spatially Distributed – Spread across different locations to account for variability
• Spectrally Pure – Use homogeneous areas to avoid mixed pixels
• Independent Validation Set – Keep separate data for accuracy assessment

Characteristics of good training data



R for Random Forest Classification
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• Better Model Control – Allows fine-tuning of hyperparameters (e.g., number of trees, 
depth, feature selection)

• Faster Processing – More efficient for large datasets compared to QGIS
• Advanced Accuracy Metrics – Generates confusion matrices, feature importance 

scores, and cross-validation
• Better Performance Tracking – Can visualize classification accuracy and analyze errors
• Seamless Integration with GIS – Results can be exported back into QGIS for 

visualization and further spatial analysis

QGIS can run Random Forest, but it has limited customization and may struggle with large 
datasets



Task
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Create your own Land Cover Classification!
As an example, we are investigating Wetlands in Rwanda

1. Create your own training data in QGIS
2. Run a Random Forest Model in RStudio
3. Visualise your results in RStudio or QGIS



Interpretation of Models
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Output of the Random Forest model -> but what does this mean?



Interpretation of Models
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Actual → 
Predicted

agricult
ure forest urban water wetlands class.error

agriculture 79 2 6 5 0 14.1% misclassified

forest 1 148 0 5 0 3.9% misclassified

urban 17 2 11 20 1 78.4% misclassified 

water 6 1 2 648 2 1.7% misclassified

wetlands 3 4 1 28 8 81.8% misclassified



Interpretation of Models
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Good Performances
• Water (97.8% accuracy) – The model is classifying water very well, with only 1.7% error
• Forest (96.1% accuracy) – Also good, with only 3.9% misclassified cases

Bad Performances
• Urban (only 11/51 correct, 78.4% error) – The model struggles to distinguish urban 

areas, misclassifying them as agriculture and water
• Wetlands (only 8/44 correct, 81.8% error) – The worst class! Wetlands are being 

confused with water (28 cases)



Interpretation of Models
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1. Not Enough Training Data for Certain Classes
• Urban and wetlands have very high misclassification rates
• They likely have too few training samples or are too similar to other classes (e.g., 

wetlands vs. water)
• Increase the number of training points for urban and wetlands

2. Overlapping Spectral Signatures
• Wetlands and water are confused because they likely have similar spectral reflectance
• Urban areas are confused with agriculture and water, which may indicate that urban 

pixels include mixed land cover types
• Try adding more spectral bands to improve separability



Interpretation of Models
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3. Class Imbalance
• Water (648 cases) dominates the dataset, while urban (11 cases) and wetlands (8 

cases) are underrepresented
• The Random Forest model will naturally be biased toward classes with more data
• Balance the dataset by using equal numbers of training samples per class

4. Feature Selection
• The features (raster bands) used for training might not be sufficiently different for urban, 

wetlands, and water
• Add additional data like: 

• Vegetation indices (NDVI, NDBI) to separate vegetation and built-up areas
• Texture analysis to distinguish urban areas from natural ones



Results
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Good training data is essential for accurate land cover classification.

Training samples must be well-distributed, balanced, and spectrally 
pure.

QGIS can be used to create training data, train the model and run the 
prediction

Summary & Key Takeaways



Thank you for your attention!

Dr. Insa Otte, Hanna Schulten,
and colleagues

insa.otte@uni-wuerzburg.de
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