

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Federal Agency for Nature Conservation

EOCap4Africa

9 Raster Analysis

c) Land Cover Classification

MARTIN-LUTHER-UNIVERSITÄT

HALLE-WITTENBERG

AR E OBSER

Learning Objectives

Understand the importance of land cover classification

EARC OBSI

Learn the differences between supervised and unsupervised classification

Explore common classification algorithms used in remote sensing

Identify the advantages and limitations of each method

Land Cover Classification

ARCH

OB

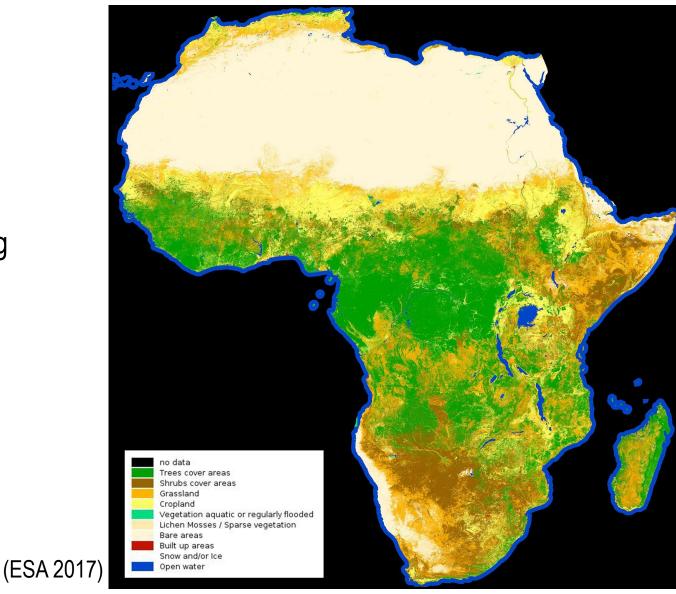
Definition

The process of categorizing and mapping the Earth's surface into distinct land cover types using remote sensing imagery and classification algorithms, which analyze the spectral, temporal, and spatial characteristics of different surfaces.

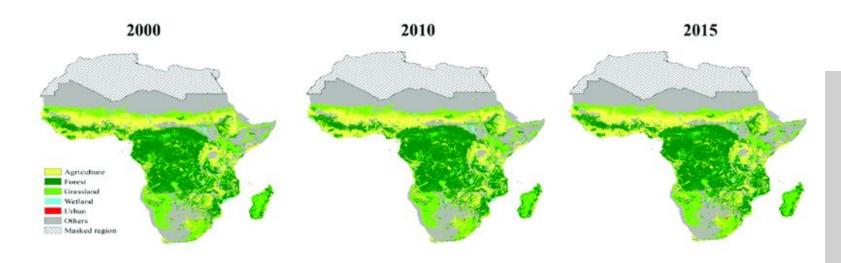
<u>UNIVERSITÄT</u> WÜRZBURG

Usage

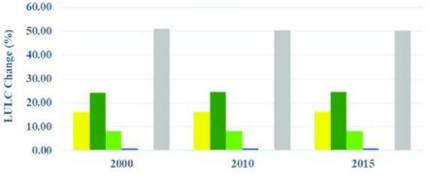
- Environmental monitoring
- Urban planning
- Agriculture and forestry
- Disaster management



Land Cover Classification - Timeseries



Trend chart



(Chiaka/Zhen 2021)

	2000	2010	2015
Agriculture	15.86	16.09	16.13
Forest	24.18	24.48	24.50
Grassland	8.13	8.12	8.13
Wetland	0.83	0.84	0.84
Urban	0.08	0.13	0.16
Others	50.91	50.35	50.25

Can you think of other use cases of LCC timeseries analysis?

EARCI OBS

Land Cover Classification Methods

Supervised Classification Requires training data (user-defined) Unsupervised Classification Clusters pixels based on statistical patterns RESEARC

OBS

Supervised Classification

- User provides labeled training data (e.g., selecting known land cover types).
- Algorithm learns from these samples to classify the entire image.

Examples

- Maximum Likelihood Classification (MLC)
- Support Vector Machines (SVM)
- Random Forest (RF)
- Artificial Neural Networks (ANN)

7

Supervised Classification

Advantages

- High accuracy if good training data is available
- Suitable for complex land cover types
- Can incorporate expert knowledge

Disadvantages

- Requires high-quality training data
- Time-consuming data collection
- Performance depends on algorithm choice

8

EARCI

OBSI

Supervised Classification – Maximum Likelihood

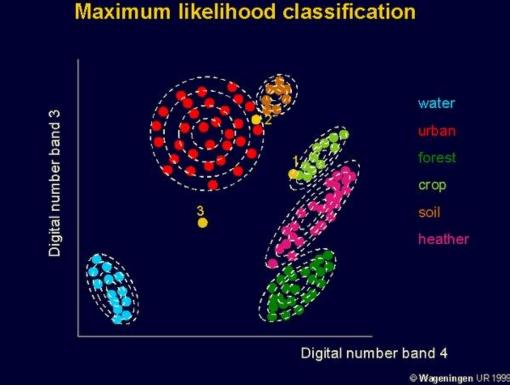
Definition

- A **probabilistic classifier** that assigns each pixel to the class with the highest probability
- Assumes that the data follows a normal (Gaussian) distribution
- Uses statistical parameters from training data (mean, variance, covariance)

Supervised Classification – Maximum Likelihood

How MLC Works

- 1. Estimates probability density functions for each class
- 2. Assigns pixels to the class with the highest probability
- 3. Uses a Bayesian decision rule to minimize classification errors



(Vahidi et al. 2023)

EARCI OBS

Supervised Classification – Maximum Likelihood

Advantages

- Well-established, widely used in remote sensing
- Provides probabilistic confidence levels
- Works well if data follows a normal distribution

Disadvantages

- Assumes normality, which may not always be true
- Performance depends on the quality of training data
- Struggles with highly heterogeneous land cover types

ARC

OBSI

Supervised Classification – Random Forest

Definition

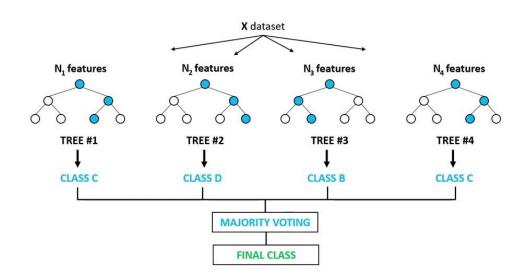
- A machine learning algorithm based on multiple decision trees
- Uses an **ensemble approach**, where each tree votes on the final classification
- Works well with both numerical and categorical data

Supervised Classification – Random Forest

How RF Works

- Creates multiple decision trees from random subsets of training data
- 2. Each tree classifies pixels independently
- 3. The final classification is determined by a majority vote

Random Forest Classifier



(Khushvaktov 2023)

EARCI

NOI

OBSER

Supervised Classification – Random Forest

Advantages

- Handles large datasets with high accuracy
- Does not assume a normal distribution
- Resistant to overfitting due to ensemble averaging

Disadvantages

- Computationally intensive, especially for large images
- Requires fine-tuning (e.g., number of trees, depth of trees)
- Can be slower than simpler classifiers

Unsupervised Classification

- No prior training data required
- Algorithm automatically groups pixels into spectral clusters
- User assigns classes to clusters after classification

Examples

- K-Means Clustering
- ISODATA (Iterative Self-Organizing Data Analysis)

Unsupervised Classification

Advantages

- No need for pre-labeled data
- Faster and more automated process
- Useful for exploratory analysis

Disadvantages

- Results may not match real-world categories well
- User must interpret clusters
 manually
- Less control over classification
 rules

EARCI

OBSI

Unsupervised Classification – K-Means

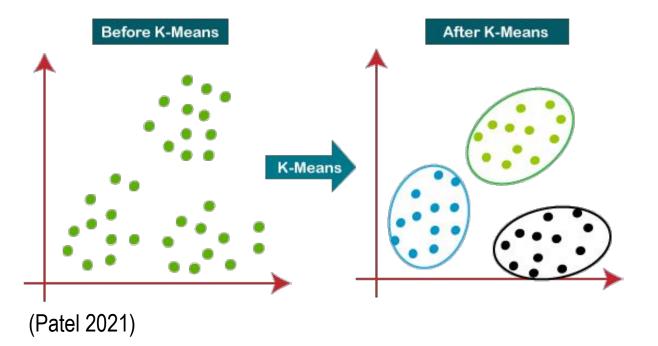
Definition

- An **unsupervised classification method** that partitions pixels into clusters based on similarity
- The number of clusters (\mathbf{K}) is defined by the user

Unsupervised Classification – K-Means

How MLC Works

- 1. Select K cluster centers (centroids) randomly
- 2. Assign each pixel to the nearest centroid based on spectral distance
- 3. Compute new centroid positions as the average of assigned pixels
- 4. Repeat the process until clusters stabilize



Unsupervised Classification – K-Means

Advantages

- Fast and efficient for large datasets
- No need for labeled training data
- Works well for initial land cover exploration

Disadvantages

- Requires predefined number of clusters (K)
- May assign similar land cover types to different clusters
- Sensitive to outliers and spectral variability

Supervised vs Unsupervised Classification

	Aspect	
0	Training Data	ł
	User Involvement	ł
A	Accuracy	-
	Best for	-
S	Example Methods	
AR.		
ER/		
BS		
0		

Aspect	Supervised Classification	Unsupervised Classification
Training Data	Required	Not required
User Involvement	High (training data & validation)	Lower (post-classification interpretation)
Accuracy	Typically higher	Can be lower due to spectral mixing
Best for	Thematic mapping, detailed studies	Quick analysis, unknown land cover
Example Methods	Maximum Likelihood, Random Forest, SVM	K-Means, ISODATA

Land cover classification is essential for remote sensing analysis

Supervised Classification requires training data and is more accurate

Unsupervised Classification is fully automated but requires interpretation

Choosing the right method depends on data availability and project goals

European Space Agency (ESA). (2017, October 3). African land cover. ESA Multimedia. Retrieved from https://www.esa.int/ESA Multimedia/Images/2017/10/African land cover Chiaka, J. C., & Zhen, L. (2021). Land use, environmental, and food consumption patterns in Sub-Saharan Africa, 2000–2015: A review. Sustainability, 13(15), 8200. https://doi.org/10.3390/su13158200 EARCH Vahidi, S., Hatamzadeh, V., Afshinfar, A., & Nouri, P. (2023). Monitoring land cover changes in Tehran City over 5 years (2018 to 2022) using remote sensing-based spatial information. Asian Journal of Environment & Ecology, 20(3), 24-35. https://doi.org/10.9734/AJEE/2023/v20i3440 Khushvaktov, F. (2023, August 26). Introduction to random forest classification by example. Medium. Retrieved from https://medium.com/@mrmaster907/introduction-random-forest-classification-by-example-6983d95c7b91 Patel, A. (2021, June 17). K-Means clustering. Medium. Retrieved from https://imakash3011.medium.com/k-means-clustering-ef8e9258d76a **OBSI**

Supported by:

Federal Agency for Nature Conservation

AR(**OBSI**

Thank you for your attention!

Dr. Insa Otte, Hanna Schulten, and colleagues

insa.otte@uni-wuerzburg.de

MARTIN-LUTHER-UNIVERSITÄT

HALLE-WITTENBERG

23